

Properties	Test methods	Units	Values	
Productname	-		PC	
Color	-		nature, colorless	
Average molar mass (average molecular weight)	-	10 ⁶ g / mol		
Density	ISO 1183-1	g / cm³	1,200	
Water apsorption				
 after 24/96 h immersion in water of 23°C (1) 	ISO 62	mg	13 / 23	
 after 24/96 h immersion in water of 23°C (1) 	ISO 62	%	0,18 / 0,33	
• at saturation in air of 23°C / 50% RH	-	%	0,15	
• at saturation in water of 23°C	-	%	0,4	
THERMAL PROPERTIES (2)			-,.	
Melting temperature (DSC, 10°C/min)	ISO 11357-1/-3	°C		
Dynamic glass transition temperature +	ISO 3146	°C	148	
Dynamic glass transition temperature ++	ISO 3146	°C		
Thermal conductivity Lambda λ at 23°C	-	W / (K · m)	0,190	
Coefficient of linear thermal expansion				
average value between 23 and 60°C		m / (m · K)	65 x 10 ⁻⁶	
 average value between 23 and 100°C 	-	m / (m · K)	65 x 10 ⁻⁶	
 average value between 23 and 150°C 	-	m / (m · K)		
Temperature of deflection under load				
• method A: 1,8 MPa	ISO 75-1/-2	°C	130	
Vicat-Erweichungstemperatur - VST/B50	ISO 306	°C		
Maximal allowable service temperature in	air			
• for short periods (3)	-	°C	135	
• continously: for 5.000 / 20.000 h (4)	-	°C	130 / 120	
Minimal service temperature (5)	-	°C	-50	
Flammability (6)				
• Oxygen-Index	ISO 4589-1/-2	%	25	
 according to UL 94 (3 / 6 mm thickness) 	-	- · ·	HB / HB	
Specific heat capacity	-	J / (g · К)	1,2	
MECHANICAL PROPERTIES AT 23°C (7)				
Tension test (8)				
 tensile stress at yield / tensile stress at break (9) + 	ISO 527-1/-2	N / mm²	74 / -	
 tensile stress at yield / tensile stress at break (9) ++ 	ISO 527-1/-2	N / mm²	74 / -	
• tensile strength (9) +	ISO 527-1/-2	N / mm²	75	
• tensile strain at yield (9) +	ISO 527-1/-2	%	6	
• tensile strain at break / elongation at break (9) +	ISO 527-1/-2	%	> 50 / -	
 tensile strain at break / elongation at break (9) ++ 	ISO 527-1/-2	%	> 50 / -	
• tensile modulus of elasticity (10) +	ISO 527-1/-2	N / mm²	2400	
• tensile modulus of elasticity (10) ++	ISO 527-1/-2	N / mm²	2400	
Compression test (11)				
compressive stress at 1/2/5 % nominal strain (12) +	ISO 604	N / mm²	18 / 35 / 72	
Creep test in tension (8)				
stress to produce 1% strain	ISO 899-1	N / mm²	17	
stress to produce 1% strain (σ 1/1000)	ISO 899-1	N / mm²	17,00	
Charpy impact strenght - Unnotched (12)	ISO 179-1/1eU	kJ / m²	no break	
Charpy impact strenght - Notched	ISO 179-1/1eA	kJ / m²	9	
Charpy impact strength (15° V-notched, both-sided)	ISO 11542-2	kJ / m²		
Izod impact strength - Notched +	180/2A	kJ / m²	9	
lzod impact strength - Notched ++	180/2A	kJ / m ²	9,00	
Ball intentation hardness (13)	2039-1	N / mm ²	120	
Rockwell hardness (134)	ISO 2039-2	N / mm ²	M 75	
Rockwell hardness (134) Shore hardness D (3 / 15 s)	ISO 2039-2 ISO 868	N / mm ²	M 75	

d Q (14) - μ / km > 3000	ofÉl(⊈¤)igteile	-	μ / km	22,00
	d Q (14)	-	μ/km	> 3000

Kunststontechnikkunnen

ELECTRICAL PROPERTIES AT 23°C

ectric strength (15) ++ IEC 60243-1 kV / mm 28,00	LECTRICAL PROPERTIES AT 23°C				
blume resistivity ++ EC 6003	Electric strength (15)	IEC 60243-1	kV / mm	28	
blume resistivity ++ EC 6003	electric strength (15) ++	IEC 60243-1	kV / mm	28,00	
hume resistivity ++	/olume resistivity +			> 10 ¹⁴	
arface resistivity ++ IEC 60093 Ω > 10 ⁴ arface resistivity ++ IEC 60093 Ω > 10 ⁴ elative permittivity s 3.00 elative permittivity s 3.00 • 10 0h /z ++ IEC 60250 - 3.00 • 11 Mhz + IEC 60250 - 3.00 • 11 Mhz ++ IEC 60250 - 0.0010 • 10 0hz +z IEC 60250 - 0.0010 • 11 0hz + IEC 60250 - 0.0010 • 11 0hz + IEC 60250 - 0.0020 • 11 10hz ++ IEC 60250 - 0.0080 • 11 111z ++ IEC 60250 - 0.0080 • 11 111z ++ IEC 60250 - 0.0080 • 11 111z ++ IEC 60112 - 350 (225) omparative tracking index (CTI) ++ IEC 60112 - 350 (225)					
arface resistivity +++ IEC 6093 Ω > 10 ³ elative permittivity ε					
elative gemittivity c • 1: 100 Hz + 1 IEC 60250 - 3,00 • 1: 104 Hz + 1 IEC 60250 - 3,00 • 1: 1 MHz + 1 IEC 60250 - 3,00 IEE CONTRACT CLASSING C	•				
- #1 100 Hz + + IEC 60250 - 3.00 - #1 0 Hz + + IEC 60250 - 3.00 - #1 1 HHz + IEC 60250 - 3.00 Hetectric dissipation factor tan Delta 5 - #1 100 Hz + IEC 60250 - 0.0010 - #1 100 Hz + IEC 60250 - 0.0010 - #1 10Hz + IEC 60250 - 0.0080 - #1 1 HHz + IEC 60250 - 0.0080 - #1 1 HHz + IEC 60112 - 350 (225) amparative tracking index (CTI) + IEC 60112 - 350 (225)		IEC 00095	Ω	> 10	
• at 100 Hz ++ IEC 60250 - 3,00 • at 1 MHz + IEC 60250 - 3,00 • at 100 Hz ++ IEC 60250 - 0,0010 • at 100 Hz ++ IEC 60250 - 0,0010 • at 100 Hz ++ IEC 60250 - 0,0010 • at 100 Hz ++ IEC 60250 - 0,0080 • at 1 MHz + IEC 60250 - 0,0080 • at 1 MHz ++ IEC 60250 - 350 (225) amparative tracking index (CTI) ++ IEC 60112 - 350 (225)		150 50050		2.00	
• at 1 MHz + IEC 60250 - 3 • at 1 MHz ++ IEC 60250 - 0,0010 • at 100 Hz + IEC 60250 - 0,0010 • at 10 Mz + IEC 60250 - 0,0010 • at 10 Mz + IEC 60250 - 0,008 • at 1 MHz + IEC 60250 - 0,008 • at 1 MHz ++ IEC 60250 - 0,008 • at 1 MHz ++ IEC 6012 - 350 (225) omparative tracking index (CTI) ++ IEC 60112 - 350 (225)					
• at 1 MHz ++ IEC 60250 - 0,0010 • at 100 Hz ++ IEC 60250 - 0,0010 • at 1 MHz ++ IEC 60250 - 0,0080 • at 1 MHz ++ IEC 60250 - 0,0080 • at 1 MHz ++ IEC 6012 - 350 (225) amparative tracking index (CTI) ++ IEC 60112 - 350 (225)					
electric dissipation factor tan Delta 6 • at 100 Hz + IEC 60250 - 0,0010 • at 104 Hz + IEC 60250 - 0,008 • at 1 MHz + IEC 60250 - 0,0080 omparative tracking index (CTI) + IEC 6012 - 350 (225)			-		
• at 100 Hz ++ IEC 60250 - 0.0010 • at 10 Hz ++ IEC 60250 - 0.008 • at 1 MHz ++ IEC 60250 - 0.0080 omparative tracking index (CT1) ++ IEC 60112 - 350 (225) omparative tracking index (CT1) ++ IEC 60112 - 350 (225)	• at 1 MHz ++	IEC 60250	-	3,00	
• at 100 Hz ++ IEC 60250 - 0,008 • at 1 MHz ++ IEC 60250 - 0,0080 • at 1 MHz ++ IEC 6012 - 350 (225) imparative tracking index (CTI) ++ IEC 6012 - 350 (225)	electric dissipation factor tan Delta δ				
• at 1 MHz ++ IEC 60250 - 0,008 · mparative tracking index (CTI) + IEC 60112 - 350 (225) mparative tracking index (CTI) ++ IEC 60112 - 350 (225)	• at 100 Hz +	IEC 60250	-	0,0010	
• at 1 MHz ++ IEC 60250 - 0,0080 umparative tracking index (CTI) ++ IEC 60112 - 350 (225)	• at 100 Hz ++	IEC 60250	-	0,0010	
amparative tracking index (CTI) ++ IEC 60112 - 350 (225) imparative tracking index (CTI) ++ IEC 60112 - 350 (225)	• at 1 MHz +	IEC 60250	-	0,008	
amparative tracking index (CTI) ++ IEC 60112 - 350 (225) imparative tracking index (CTI) ++ IEC 60112 - 350 (225)			-		
mparative tracking index (CTI) ++ IEC 6012 - 350 (225)					
	inputative ducking index (CII) TT	120 00112	-	550 (225)	

Legend

- 1. Following the ISO 62 written procedures \emptyset 50 x 3 mm.
- 2. The values listed for properties are largely taken from the material sheets supplied by raw material suppliers and other publications.
- 3. The properties listed are all values for semi-crystalline materials, and not amorphous materials.
- 4. Valid for just a few hours of thermal stress for applications where there is little or no mechanical stress.
- 5. Quoted thermal stability over 5,000 / 20,000 hours. Beyond this period, the tensile strength decreases to around 50% of the initial value. As with all thermoplastics, the maximum permissible operating temperature is in many cases primarily dependent on the duration and magnitude of the mechanical stress which occurs during exposure to heat.
- 6. In view of the reduction in impact strength with decreasing temperature, the lower service temperature limit is in practice particularly determined by the magnitude of the impact stress applied to the material. The values listed here are based on adverse shock loads and should not be considered an absolute practical limit.
- 7. It should be noted that these values, which have been estimated from the material sheets provided by raw material suppliers, must under no circumstances be taken as a guide to behaviour or reaction when the material is subject to fire. There are no "UL Yellow Cards" for these semi-finished products.
- 8. The data given for dry material (+) are mostly average values of tests carried out on test specimens consisting of round bars Ø40 60 mm. Considering the very low water absorption of POM, PET and PC, the values for the mechanical and electrical properties of dry (+) and damp (++) specimens of these materials can be considered almost equal.
- 9. Test piece: Type 1 B
- 10. Test speed: 20 mm/min. (5 mm/min for PA6.6 + GF, POM-C + PTFE and PET TX)
- 11. Test speed: 1 mm/min.
- 12. Test specimen: cylinder (Ø 12 x 30mm)
- 13. Pendulum used: 15 J.
- 14. Measured on 10-mm thick test specimens
- 15. Electrode configuration: two cylinders Ø 25 / Ø 75 mm; in transformer oil according to IEC 296; measured on 1-mm thick natural specimens. It is important to know that the dielectric strength of black extruded material (PA6, PA6.6, POM and PET) can be up to 50% lower than that of natural-coloured material. A possible microporosity in the centre of POM semi-finished products also results in a significant reduction in dielectric strength. This table is intended to assist you in selecting materials. The values listed here are within the usual range of product properties. However, they are not guaranteed property values and should not be used as the sole basis for construction. It should be noted that PA6.6 + GF is a fibre-reinforced material which is therefore considered anisotropic (properties are different dependent upon whether the fibres are parallel or perpendicular to the extrusion direction)